x^2+x+110+3x+70=180

Simple and best practice solution for x^2+x+110+3x+70=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+x+110+3x+70=180 equation:



x^2+x+110+3x+70=180
We move all terms to the left:
x^2+x+110+3x+70-(180)=0
We add all the numbers together, and all the variables
x^2+4x=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 4x-7=3x+22* | | 4x+40=20+2(2x10) | | 5(3x-2)=200-5x | | 9(x+10)=8x+6 | | -6y+4=3y+16 | | 2/3(3a-15)=4(2a=5) | | 6/(x+1)=5-6x/(x+1) | | x5+4=13 | | p8=p-5 | | 30−4x=5 | | (7x−1)+(7x−1)+(3x−17)=180 | | 100=7x+3 | | 3+x=4-9x | | 12.75x+25=11.75x+25 | | w-15=7.7 | | 1/58=45/c | | -4(-3n-2)=32 | | |c-10|+20=15 | | 6=6x=18+4x | | 8p+1=29 | | 3(x−3)=3x+8 | | 40+8x=200-6x | | 4x-6=20+2(x+10) | | 31/4a=11 | | -3x+5=10-5 | | 6=4+x/7 | | 1/3/x=-22 | | 8x+24+5x+7=14x+22 | | 3(x-1)+5x=29 | | 35(2)=y | | 4+8x=108 | | -21+9x=3x-3 |

Equations solver categories